terça-feira, 7 de janeiro de 2014

o artigo citado na entrada anterior... 'an evaluation of the left-brain vs. right-brain hypothesis with resting state functional connectivity magnetic sesonance imaging'... no plos one org...!

"Abstract

Lateralized brain regions subserve functions such as language and visuospatial processing. It has been conjectured that individuals may be left-brain dominant or right-brain dominant based on personality and cognitive style, but neuroimaging data has not provided clear evidence whether such phenotypic differences in the strength of left-dominant or right-dominant networks exist. We evaluated whether strongly lateralized connections covaried within the same individuals. Data were analyzed from publicly available resting state scans for 1011 individuals between the ages of 7 and 29. For each subject, functional lateralization was measured for each pair of 7266 regions covering the gray matter at 5-mm resolution as a difference in correlation before and after inverting images across the midsagittal plane. The difference in gray matter density between homotopic coordinates was used as a regressor to reduce the effect of structural asymmetries on functional lateralization. Nine left- and 11 right-lateralized hubs were identified as peaks in the degree map from the graph of significantly lateralized connections. The left-lateralized hubs included regions from the default mode network (medial prefrontal cortex, posterior cingulate cortex, and temporoparietal junction) and language regions (e.g., Broca Area and Wernicke Area), whereas the right-lateralized hubs included regions from the attention control network (e.g., lateral intraparietal sulcus, anterior insula, area MT, and frontal eye fields). Left- and right-lateralized hubs formed two separable networks of mutually lateralized regions. Connections involving only left- or only right-lateralized hubs showed positive correlation across subjects, but only for connections sharing a node. Lateralization of brain connections appears to be a local rather than global property of brain networks, and our data are not consistent with a whole-brain phenotype of greater “left-brained” or greater “right-brained” network strength across individuals. Small increases in lateralization with age were seen, but no differences in gender were observed.


Introduction

Lateralized brain regions direct functions such as language and visuospatial processing. In most right-handed individuals, paying attention to stimuli involving language elicits brain activity lateralized to the left hemisphere, whereas paying attention to stimuli involving visuospatial processing elicits brain activity lateralized to the right hemisphere [1][4]. Atypical lateralization in brain structure and function is associated with neuropsychiatric disorders such as autism spectrum disorders and schizophrenia [5][10], although there is considerable variation within typically developing individuals in the strength to which specific functions such as language are lateralized to the canonical side, particularly for left-handed and ambidextrous individuals [11].

Previous studies of brain laterality are largely limited to regional assessment of specialized functions and differences in structural lateralization. It has been well documented that small structural asymmetries consisting of a frontal (right>left) and occipital (left>right) shear effect are present in most individuals [12], in addition to asymmetries of the planum temporale, angular gyrus, caudate, and insula [13]. A diffusion tensor study of a predefined brain parcellation using graph-theoretical methods showed increased efficiency and connectedness within the right hemisphere, but with regions of greatest network centrality in the left hemisphere [14]. Additional asymmetries in gray matter volume have been observed within nodes of the default mode network [15].

With the recent development of resting state functional connectivity magnetic resonance imaging (rs-fcMRI) techniques, it has become possible to characterize whole-brain lateralization using a data-driven approach. Two recent studies have investigated whole-brain lateralization using rs-fcMRI [16], [17]. Liu et al. (2009) found that connectivity of classical language regions, medial prefrontal cortex, and posterior cingulate cortex was most strongly left-lateralized, whereas that of insula, angular gyrus, anterior cingulate cortex, and visual cortex was most strongly right-lateralized. Males had more strongly lateralized connections than females. In a factor analysis, the four factors that accounted for the most variance involved regions from the following cortical networks: visual, default, salience, and language. Handedness influenced the laterality of the four factors; however, it affected laterality differently across the factors.

Tomasi and Volkow (2012) demonstrated that short- and long-range connections were predominantly right-lateralized in brain regions surrounding the lateral sulcus, whereas left-lateralized connections were limited to medial areas of the occipital cortex and superior rim of the parietal and posterior frontal lobes [17]. Additionally, much of the medial aspect of the frontal and parietal lobes had right-lateralized long-range connections, whereas Broca Area and angular gyrus had left-lateralized long-range connections. As in Liu et al. (2009), males had more lateralized connections than females, although the effect was small.
These studies raise important questions. Does functional connectivity lateralization reflect structural asymmetry or does it represent a lateralized difference in the strength of synaptic connections? Does a whole-brain phenotype of relatively greater “left-brain” or “right-brain” functional specialization across individuals exist, or are lateralized connections in different brain networks independent of each other within an individual? Are these connectivity patterns modified with age, as the brain matures into an adult phenotype? In this manuscript, we address these questions and find that lateralized regions create left- and right-lateralized networks, lateralized connections are independent from one another across individuals, and that the majority of functional lateralization occurs before age seven."

para ler o resto do artigo... siga a ligação abaixo...


Sem comentários:

Enviar um comentário